- Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/ bjsports-2015-094927).
${ }^{1}$ Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
${ }^{2}$ Department of Gastrointestinal Oncology, Hubei Cancer Hospital, Wuhan, Hubei, China
${ }^{3}$ Department of Pathology, Hubei Cancer Hospital, Wuhan, Hubei, China

Correspondence to

Dr Li Liu, Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 of Hangkong Road, Wuhan, Hubei 430030, China gracefulliuly@163.com

TL and SW contributed equally.
Accepted 1 September 2015
Published Online First 18 September 2015

The dose-response effect of physical activity on cancer mortality: findings from 71 prospective cohort studies

Tingting Li, ${ }^{1}$ Shaozhong Wei, ${ }^{2}$ Yun Shi, ${ }^{1}$ Shuo Pang, ${ }^{1}$ Qin Qin, ${ }^{1}$ Jieyun Yin, ${ }^{1}$ Yunte Deng, ${ }^{3}$ Qiongrong Chen, ${ }^{3}$ Sheng Wei, ${ }^{1}$ Shaofa Nie, ${ }^{1}$ Li Liu ${ }^{1}$

Abstract

Background The WHO recommends moderate physical activity to combat the increasing risk of death from chronic diseases. We conducted a meta-analysis to assess the association between physical activity and cancer mortality and the WHO recommendations to reduce the latter. Methods MEDLINE and EMBASE were searched up until May 2014 for cohort studies examining physical activity and cancer mortality in the general population and cancer survivors. Combined HRs were estimated using fixed-effect or random-effect meta-analysis of binary analysis. Associated HRs with defined increments and recommended levels of recreational physical activity were estimated by two-stage random-effects doseresponse meta-analysis. Results A total of 71 cohort studies met the inclusion criteria and were analysed. Binary analyses determined that individuals who participated in the most physical activity had an HR of $0.83(95 \% \mathrm{Cl} 0.79$ to 0.87$)$ and 0.78 ($95 \% \mathrm{Cl} 0.74$ to 0.84) for cancer mortality in the general population and among cancer survivors, respectively. There was an inverse non-linear doseresponse between the effects of physical activity and cancer mortality. In the general population, a minimum of $2.5 \mathrm{~h} /$ week of moderate-intensity activity led to a significant 13% reduction in cancer mortality. Cancer survivors who completed 15 metabolic equivalents of task (MET)-h/week of physical activity had a 27% lower risk of cancer mortality. A greater protective effect occurred in cancer survivors undertaking physical activity postdiagnosis versus prediagnosis, where 15 MET-h/ week decreased the risk by 35% and 21%, respectively. Conclusions Our meta-analysis supports that current physical activity recommendations from WHO reduce cancer mortality in both the general population and cancer survivors. We infer that physical activity after a cancer diagnosis may result in significant protection among cancer survivors.

INTRODUCTION

Cancer is a leading disease burden in developed and developing countries with 8.2 million cancer deaths in 2012 as estimated by the WHO. ${ }^{1}$ The World Cancer Research Fund (WCRF) recently reaffirmed that the risk of cancer is affected by our lifestyles and that an active lifestyle is protective against cancer mortality. ${ }^{2}$ Specifically, an inverse association between physical activity and mortality has been discovered for breast, ${ }^{3}$ colorectal ${ }^{4}$ and prostate cancers. ${ }^{5}$ The association was further validated by meta-analyses in breast and colorectal
cancers. ${ }^{67}$ However, the magnitude and intensity of physical activity most beneficial against cancer mortality is unclear. The most recent guidelines promoted by the WHO recommend a minimum of 2.5 h of moderate intensity physical activity (3 to <6 metabolic equivalents of task (MET)) or 1.25 h of vigorous intensity physical activity (≥ 6 METs) per week or any equivalent combination for health benefits, and 5.0 h of moderate intensity physical activity or 2.5 h of vigorous intensity physical activity per week for additional health benefits. ${ }^{8-11}$ Specific recommendations to prevent cancer mortality are still lacking. ${ }^{12}$ Accordingly, we conducted a meta-analysis of prospective studies to assess the association of physical activity with cancer mortality and to explore whether the current WHO recommendations are optimal.

METHODS

Search strategy and study selection

This meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. ${ }^{13}$ MEDLINE and EMBASE databases were searched up to 30 May 2014 for cohort studies published in English that investigated the association between physical activity and cancer mortality. The search terms were as follows: ('exercise', 'physical activity', 'walking' or 'motor activity' with 'cancer', 'neoplasm' or 'carcinoma'). Duplicate studies were removed, and the reference lists of relevant literature and previous relevant reviews and meta-analyses were checked for additional publications of interest.
Included studies fulfilled the following criteria: (1) cohort study design, (2) physical activity (eg, leisure-time physical activity, recreational physical activity, exercise and sports, routine activity of daily living, physical activity of transportation, etc) included as a variable, (3) investigated the association between physical activity and cancer mortality (defined as deaths due to cancer) in the general population or among cancer survivors and (4) provided relative risk (RR) or HR estimates and 95\% CIs or sufficient data to calculate them. Studies were excluded if they: (1) studied a population with a chronic disease (eg, cardiovascular disease or diabetes mellitus), (2) measured physical fitness but not physical activity, (3) focused on cancer risk not cancer mortality or (4) measured only work-related physical activity. Two authors independently read the full text of all included articles to determine whether each study met the eligibility criteria outlined above.

Data extraction

Data collection and extraction were conducted independently by two investigators, and all discordances were resolved by discussion. For each study, the following information was extracted: first author's name, publication year, cohort name, study location, study design, age at baseline, gender, number of cases or participants, number of cancer deaths, domains of physical activity, when physical activity was measured (prediagnosis (in the general population study), prediagnosis or postdiagnosis (in the cancer survival study)), amounts of physical activity at each level in different units (eg, MET-h/week, h/week, kcal/week and km / h), cancer type, duration of follow-up, estimate of effect (reported as a RR, HR) and the corresponding 95\% CI for the association of physical activity with cancer mortality, and adjustment variables (eg, age, body mass index (BMI) and stage). We extracted the binary estimate of the most comprehensive domain of physical activity from each study for a pooled assessment of the most active group compared with the least active group. The effect and 95% CI were inverted for study in which the most active group was used as the reference group. Estimates from each level of recreational physical activity, the most commonly measured domain and main modifiable form of energy expenditure, were extracted for dose-response analysis. ${ }^{14}$ Lifetime results were used if a study reported the effect of physical activity at both multiple ages and over a lifetime. When a study reported separately on males and females, both risk estimates were included in the primary analysis. Additionally, in the case of multiple publications, we included the most up-to-date or comprehensive information.

Assessment of risk of bias in individual studies

We used the Newcastle-Ottawa quality assessment scale ${ }^{15}$ to assess the risk of bias in each individual study based on the following: representativeness of the exposed cohort, selection of the unexposed cohort, methods of measuring physical activity, comparability of cohorts based on design or analysis, adjustment for confounding factors (age, BMI, stage, tumour differentiation, etc), duration and adequacy of follow-up, and study end points (cancer mortality). High-quality responses earned a star with up to nine stars in total.

Statistical analysis

Binary analysis, and fixed-effect or random-effect models were used to estimate the summary HRs for associations between physical activity and cancer mortality when appropriate. ${ }^{16}$ Dose-response analyses were conducted for studies with three or more quantitative activity levels in MET-h/week and $\mathrm{h} /$ week, the most applicable measures of physical activity, using nonlinear random effect models. ${ }^{17}$ For each activity level, the median or mean amount of physical activity was assigned to the corresponding HR estimate. If the median or mean value was not reported, we used the midpoint of the upper and lower boundaries of each category. For studies reporting open upper boundaries for the highest category (eg, $>200 \mathrm{~min} /$ week), we multiplied the reported lower boundary by 1.25 and used this value (eg, $250 \mathrm{~min} / \mathrm{week}$) as the midpoint. ${ }^{18}$ Heterogeneity in the relationship between physical activity and cancer mortality was assessed by Q test and quantified by I^{2} statistic. ${ }^{19}$ In order to assess the effect of the study characteristics and quality on the reported estimates, heterogeneity was analysed by comparing the effect estimate summary from subgroup analyses. Subgroup analyses were conducted in topics that had at least three original studies and were by cancer type, gender, study location,
follow-up duration (<10 years, ≥ 10 years) and when physical activity was measured (prediagnosis or postdiagnosis). To test for statistically significant potential confounders (eg, publication year, study location, follow-up duration, cancer type, when physical activity was measured, measurement of physical activity, study design and quality), meta-regression analysis ${ }^{20}$ was used to calculate ratios of risk. Publication bias was examined using Begg's test and Egger's test. ${ }^{21}$ We performed sensitivity analyses by omitting one study at a time from the initial meta-analysis. All statistical tests were two-sided and p values <0.05 were considered statistically significant. All analyses were conducted using Stata software (V.12.0; StataCorp, College Station, Texas, USA).

RESULTS

Study selection

In total, 16980 articles were initially identified in the literature search; and 10619 articles were left after removing duplicates, of which 10422 studies were not relevant to the main topic and excluded. Thirty of the remaining 197 studies were excluded due to a focus on occupational physical activity, 91 for not fulfilling the inclusion criteria and 7 for providing information from overlapping studies. Two additional articles were identified in a manual search of reference lists. Overall, 71 studies were included in the primary meta-analysis (figure 1).

Characteristics of the studies

Of the 71 prospective studies reporting on the association between physical activity and cancer mortality, 36 were general population-based studies ${ }^{[[1-36]}$ and 35 studies were conducted among cancer survivors. ${ }^{\text {S }}{ }^{[37-71]}$ The major characteristics of these studies and reference list are shown in online supplementary table S1. In total, 3985164 participants were included in the general population-based studies and 66995 cancer deaths were observed. Nine studies were done in North

Figure 1 Flow diagram of study selection.

America, ${ }^{\mathrm{S}}\left[\begin{array}{lllllllll}1 & 2 & 8 & 16 & 23 & 28 & 32 & 34 & 35\end{array}\right] 9$ in Asia ${ }^{\mathrm{S}}\left[\begin{array}{lllllll}7 & 12-14 & 25-27 & 31 & 33\end{array}\right]$ and 18 in Europe. $\left.{ }^{\text {S }} \begin{array}{lllllll}3-6 & 9-11 & 15 & 17-22 & 24 & 29 & 30\end{array}\right]$ Twenty-two studies provided data on the relationship between physical activity and mortality from various cancer, ${ }^{\mathrm{S}}\left[\begin{array}{lllllllll}1-6 & 9 & 11 & 14-16 & 19 & 21-23 & 26 & 29-31\end{array}\right.$ $\left.\begin{array}{llll}33 & 35 & 36\end{array}\right]$ with five on colorectal cancer, $\left.{ }^{\text {S[1 }} \begin{array}{lllll}12 & 24 & 26 & 27 & 34\end{array}\right]$ four on pancreatic cancer ${ }^{\mathrm{S}\left[\begin{array}{llll}8 & 13 & 18 & 25\end{array}\right] \text { and three on breast cancer. }{ }^{\mathrm{S}}\left[\begin{array}{lll}26 & 32 & 34\end{array}\right]}$ In the 35 cancer survival studies, 69011 patients with cancer were included with 9516 cancer deaths. Twenty-five of these studies were conducted in North America, ${ }^{[38-41} 4344$ 48-52 54 $\left.{ }_{57-65} 68-71\right]$ and six in Europe. $\left.{ }^{\text {S }} 4 \begin{array}{llll}45-47 & 53 & 55 & 67\end{array}\right]$ Nineteen studies were on breast cancer survival ${ }^{\text {S[37-41 } 444750-55} 576061$ 67-69] and
 these, 24 studies, ${ }^{\text {S[37-43 45-47 } 5153-555761-6567687071]} 14$ studies ${ }^{\text {S }}$ $\left[\begin{array}{lllllllll}40 & 43 & 44 & 49 & 50 & 56-60 & 62 & 65 & 66\end{array}\right.$ 69] and five studies $\begin{array}{llllll}\mathrm{S}\left[\begin{array}{llllll}40 & 43 & 57 & 62 & 65\end{array}\right]\end{array}$ reported on the association between prediagnosis, postdiagnostic or both prediagnostic and postdiagnostic physical activity, respectively, and cancer mortality. The overall quality score ranged from 6 to 9 based on the Newcastle-Ottawa scale with 16 studies scoring 6 stars, 10 scoring 9 stars and the rest $7-8$ stars.

The role of physical activity in reducing cancer mortality in the general population
 Binary analysis

As shown in table 1, compared to the lowest amount of physical activity, the highest amount of physical activity presented significant protection against death from cancer, with a pooled HR of 0.83 (95% CI 0.79 to $0.87, \mathrm{I}^{2}=65.6 \%$). Consistent associations were confirmed by subanalyses of gender, study location, duration of follow-up and cancer type. The highest levels of physical activity reduced cancer mortality by 17% in males and females. Similarly, studies conducted in North America, Europe and Asia found a $17-19 \%$ protective effect. Cancer mortality presented a 17% and 16% reduction in studies, respectively, with a follow-up of less than or at least 10 years. Besides, high level of physical activity reduced the mortality of colorectal cancer by 21%. The heterogeneity of binary comparison was significant ($I^{2}=65.6 \%$), which, based on subgroup analysis, was mainly from North American studies. Besides study location, meta-regression did not find new sources of heterogeneity. Begg's test $(\mathrm{p}=0.32)$ and Egger's test ($\mathrm{p}=0.09$) indicated no evidence for publication bias. Also, sensitivity analysis found that the pooled results did not overtly change even on omission

Table 1 Pooled measures on the relation of physical activity to cancer mortality in the general population

	Number of data sets included	HR (95\% CI)	I^{2} (\%)	p Value
Overall	54	0.83 (0.79 to 0.87)	65.6	<0.001
Sex				
Male	22	0.83 (0.75 to 0.92)	71.0	<0.001
Female	14	0.83 (0.73 to 0.94)	67.9	<0.001
Study location				
North America	11	0.83 (0.74 to 0.93)	80.5	<0.001
Europe	24	0.82 (0.75 to 0.90)	69.3	<0.001
Asia	19	0.81 (0.76 to 0.85)	0.0	0.462
Duration of follow-up (year)				
<10	23	0.83 (0.76 to 0.92)	62.6	<0.001
≥ 10	29	0.84 (0.79 to 0.89)	66.2	<0.001
Cancer types				
Colorectal cancer	6	0.79 (0.71 to 0.88)	0.00	0.477

of the most influential study (online supplementary figures S1 and S2).

Dose-response analysis

Figure 2 shows evidence of a non-linear association between recreational physical activity and cancer mortality by MET-h/ week in general population. The HRs of cancer mortality following $5,10,15,20$ and 25 MET-h/week of recreational physical activity were $0.88,0.86,0.86,0.85$ and 0.84 , respectively, when compared with inactivity. The dose-response curve steeply sloped below 7.5 MET-h/week, the minimum energy expenditure of 2.5 h moderate physical activity per week recommended by the WHO, and then gently declined. Individuals who met the lower limit of the WHO guidelines, 7.5 MET-h/ week, had a 14% lower risk of cancer mortality. An approximate 2% reduction in cancer mortality for every 1 MET-h/week increase below 7.5 MET-h/week occurred compared to a 1% reduction in cancer mortality by every 10 over 7.5 MET-h/ week. Pooled results indicate a similar inverse relation between recreational physical activity and cancer mortality in Asians (online supplementary table S2 and figure S3). The HRs of cancer death for $5,10,15,20$ and 25 MET-h/week of recreational physical activity were $0.91,0.87,0.86,0.85$ and 0.84 , respectively, when compared with the lowest amount of physical activity in the Asian population. This curve shows a significant reduction below 12 MET-h/week and over 22 MET-h/week with a 1% reduction in cancer mortality for every 1 MET-h/ week. A similar relationship was observed in studies within 10 years of follow-up. Other subgroups could not be analysed due to insufficient data.

Figure 2 Dose-response relation between cancer mortality and recreational physical activity in the form of metabolic equivalents of task (MET)-h/week (A) and $\mathrm{h} /$ week (B) in the general population. The solid line and the long dash line represent the estimated relative risk and its $95 \% \mathrm{Cl}$. The short dash line represents the linear relationship.

The HRs of cancer mortality for $2,3,4,6$ and $8 \mathrm{~h} /$ week of recreational physical activity were $0.94,0.92,0.91,0.91$ and 0.90 , respectively, compared to inactivity (online supplementary table S2). As shown in figure 2, the curve trended a decline with continuously increasing levels of recreational physical activity. Individuals who engaged in $2.5 \mathrm{~h} /$ week of recreational physical activity compared to none had a 7% lower cancer mortality. A further 2% reduction in cancer mortality was seen for every additional $6 \mathrm{~h} /$ week activity over $2.5 \mathrm{~h} /$ week. Subgroup analyses are presented in online supplementary figure S3. Cancer mortality decreased rapidly below $2 \mathrm{~h} /$ week and then declined steadily over $2 \mathrm{~h} /$ week in North Americans. A similar effect was observed in individuals following up over 10 years. Other subgroups could not be analysed due to insufficient data.

The role of physical activity in reducing cancer mortality in cancer survivors

Binary analysis

A strong association between high levels of physical activity and cancer mortality was observed in cancer survivors with an HR of 0.78 (95% CI 0.72 to $0.84, \mathrm{I}^{2}=56.9 \%$) (table 2). The highest levels of physical activity reduced cancer mortality by 21% in female cancer survivors. However, we did not observe a similar association in males. The protection by physical activity against cancer death was further observed in North American studies with reduced 25% cancer mortality, but not in European. The association between physical activity and cancer mortality was not affected by duration of follow-up, which showed a 20% and 30% lower risk in participants followed up for less than and at least 10 years, respectively. A more pronounced protection from postdiagnostic physical activity ($\mathrm{HR}=0.60,95 \%$ CI 0.50 to 0.71 , $\mathrm{I}^{2}=53.8 \%$) than prediagnostic physical activity ($\mathrm{HR}=0.86,95 \%$ CI 0.80 to $0.92, \mathrm{I}^{2}=16.7 \%$) was observed among cancer survivors. This inverse association between physical activity and cancer mortality was confirmed in breast cancer survivors and colorectal cancer survivors. There was evidence of heterogeneity between cancer survival studies of highest versus lowest levels of physical activity $\left(\mathrm{I}^{2}=56.9 \%\right)$. On the basis of subgroup analyses, the studies conducted in North America are

Table 2 Pooled measures on the relation of physical activity to cancer mortality among cancer survivors

	Number of data sets included	HR (95\% CI)	I^{2} (\%)	p Value
Overall	57	0.78 (0.72 to 0.84)	56.9	<0.001
Sex				
Female	43	0.79 (0.74 to 0.84)	37.0	0.009
Male	3	0.80 (0.57 to 1.12)	79.2	0.008
Study location				
North America	45	0.75 (0.68 to 0.82)	63.2	<0.001
Europe	8	0.90 (0.78 to 1.02)	0.0	0.679
Duration of follow-up (year)				
<10	45	0.80 (0.74 to 0.87)	51.6	<0.001
≥ 10	11	0.70 (0.55 to 0.88)	60.7	0.005
Cancer types				
Breast cancer	33	0.76 (0.70 to 0.82)	30.2	0.053
Colorectal cancer	14	0.76 (0.64 to 0.90)	50.7	0.015
When physical activity was measured				
Prediagnosis	34	0.86 (0.80 to 0.92)	16.7	0.198
Postdiagnosis	16	0.60 (0.50 to 0.71)	53.8	0.006

responsible for most of the observed heterogeneity. Meta-regression analysis indicated that how physical activity was measured ($\mathrm{p}=0.01$) was statistically significant in a multivariate model, while Egger's test suggests publication bias ($\mathrm{p}<0.001$). Results from the sensitivity analysis did not change even if the most influential study was omitted (online supplementary figures S1 and S2).

Dose-response analysis

The pooled results show the expected inverse relationship between recreational physical activity and cancer mortality. The cancer mortality declined rapidly with a 2% reduction for every 1 MET-h/week below 10 MET-h/week followed by a plateau over 15 MET-h/week (figure 3). Compared with no recreational physical activity, 5, 10, 15, 30 and 50 MET-h/week reduced the overall cancer mortality by $18 \%, 25 \%, 27 \% 30 \%$ and 35%, respectively. Subgroup analyses demonstrated that similar trends occurred in all studies included (online supplementary table S3 and figure S4). An inverse association between recreational physical activity and cancer mortality was found in females. The cancer mortality dropped rapidly with a 2% reduction for each added 1 MET-h/week below 10 MET-h/week and then stabilised at 70% for activity over 15 MET-h/week. Similarly, a protective role for recreational physical activity was observed in North Americans and cancer survivors within 10 years of follow-up. In particular, stronger protection occurred against cancer mortality with postdiagnostic physical activity compared with prediagnostic physical activity. Cancer mortality quickly decreased by 35% when individuals participated in 15 MET-h/week of recreational physical activity after diagnosis and a further 5% reduction in cancer mortality occurred with every additional 10 MET-h/ week. In comparison, the cancer mortality decreased by 21% at 15 MET-h/week of prediagnostic physical activity with no further reduction on increasing the amount of recreational physical activity (figure 4). We further explored the association between recreational physical activity and breast cancer mortality and the results were similar to the analysis of the female subgroup; the results stabilised at a 2.5% reduction in cancer mortality for every additional 1 MET-h/week below 10 MET-h/week. An inverse linear relationship was found between recreational physical activity and colorectal cancer mortality ($\mathrm{p}_{\text {for }}$ non-linearity $=0.772$), which was statistically significant over 10 MET-h/week with a 1% reduction in cancer mortality with every additional 1 MET-h/week online

Figure 3 Dose-response relation between cancer mortality and recreational physical activity (metabolic equivalents of task (MET)-h/ week) among cancer survivors. The solid line and the long dash line represent the estimated relative risk and its $95 \% \mathrm{Cl}$. The short dash line represents the linear relationship.

Figure 4 Dose-response relation between cancer mortality and recreational physical activity (metabolic equivalents of task (MET)-h/ week) in postdiagnosis (A) and prediagnosis (B) among cancer survivors. The solid line and the long dash line represent the estimated relative risk and its $95 \% \mathrm{CI}$. The short dash line represents the linear relationship.
supplementary figure S4. Furthermore, we conducted subset analysis among breast cancer survivors, and a more pronounced benefit was found from postdiagnostic physical activity than prediagnostic physical activity. Compared with no recreational physical activity, $5,10,15$ and 20 MET-h/week of prediagnostic physical activity reduced breast cancer mortality by $24 \%, 28 \%$, 29% and 30%, respectively. Meanwhile, breast cancer mortality reduced by $24 \%, 32 \%, 39 \%$ and 40% when individuals participated in 5, 10, 15 and 20 MET-h/week of recreational physical activity after diagnosis, respectively. Similarly, the decreasing trend in colorectal cancer mortality occurred in postdiagnostic physical activity as in overall physical activity (online supplementary figure S5).

DISCUSSION

This relatively large meta-analysis summarises the contribution of physical activity to reducing cancer mortality and quantifies the reduction in cancer mortality with incremental increases in recreational physical activity. In summary, we found that a high level of physical activity lowered the risk of cancer mortality in the general population and cancer survivors compared to inactivity. Dose-response analyses estimated the benefits for different levels of recreational physical activity by measuring MET-h/week and $\mathrm{h} /$ week. The results primarily showed consistent non-linear relationships between recreational physical activity and cancer mortality in the general population and among cancer survivors.

Our findings based on the general population showed that individuals undergoing the highest levels of physical activity had
a 17% reduction in cancer mortality. This effect was not influenced by gender, study location or duration of follow-up. Doseresponse analyses further revealed that the cancer mortality decreased significantly by 13% and 7% in the general population that undertook 7.5 MET-h/week and $2.5 \mathrm{~h} /$ week recreational physical activity, respectively. Recent meta-analyses confirmed a similar inverse relationship between high levels of physical activity and all-cause mortality. ${ }^{18}{ }^{22}$ In particular, one meta-analysis quantified the dose-response of all-cause mortality to non-vigorous physical activity and demonstrated that adhering to the WHO's recommendations contributed to a 19% reduction. ${ }^{22}$ A recent dose-response analysis based on six studies from the National Cancer Institution Cohort Consortium found that compared with individuals reporting no leisure time physical activity, 21% lower cancer mortality was steadily observed among those performing 1-3 times of the WHO's recommendation (7.5 to <22.5 MET-h/week). ${ }^{23}$ Similarly, our study, based on extensive original publications, confirmed that moderate intensity activity was associated with cancer mortality benefit in the general population as well.

The inverse relationship between physical activity and cancer mortality was also confirmed in cancer survivors. Basically, cancer survivors undertaking the highest level of physical activity had a 22% reduction in cancer mortality. In particular, evidence from the meta-analysis suggests a non-linear doseresponse of cancer mortality to recreational physical activity. Our findings confirmed and extend previous qualitative evidence, ${ }^{6}{ }^{7}$ which reported a correlation between physical activity and cancer mortality in breast and colorectal cancers, respectively. In addition, our findings are consistent with recent published quantitative meta-analysis by Zhong et al, ${ }^{24}$ which revealed a similar non-linear dose-response relationship between physical activity and breast cancer mortality. The effect of recreational physical activity within a female subgroup analysis was very similar to that within the breast cancer subgroup, which suggests that they came out of similar data sources. The benefit of recreational physical activity was evident for North Americans and strongly supports the 2008 Physical Activity Guidelines for Americans, which endorses $2.5 \mathrm{~h} /$ week of moderate activity. ${ }^{25}$

Several mechanisms potentially explain the protection afforded by physical activity against cancer mortality. Studies cite the metabolic effects of high physical activity, including lower BMI, lower sex hormones, reduced adiposity, insulin and c-peptide levels and possibly effects on inflammation or the immune system. ${ }^{26-29}$ However, the proposed mechanisms may differ based on the type of cancer. For instance, physical activity increases insulin sensitivity. ${ }^{30}$ Higher circulating insulin and insulin-like growth factor-1 and lower insulin-binding protein level have been associated with colorectal risk in epidemiology studies. ${ }^{31-33}$ A previous study showed higher colorectal cancer mortality among individuals with metabolic abnormalities related to insulin metabolism compared with those without hyperinsulinaemia and insulin resistance. ${ }^{34}$ In a similar way, insulin resistance may influence the risk of breast cancer recurrence and mortality, ${ }^{35}$ and physical activity is known to lower insulin levels and improve insulin sensitivity. ${ }^{36}{ }^{37}$ Furthermore, exercise intervention studies have measured improvements in insulin-like growth factor 1 (IGF-I) and insulin-like growth factor binding protein 3 (IGFBP-3) and biomarkers related to cancer progression and recurrence among breast cancer survivors following high levels of exercise. ${ }^{38} 39$

Interestingly, we found that the inverse association between physical activity and cancer mortality was more pronounced
in postdiagnostic physical activity than prediagnostic physical activity with a 26% difference. Previous meta-analyses conducted in breast and colorectal cancer survival studies clearly supported that postdiagnosis physical activity was associated with lower cancer mortality than prediagnosis physical activity. ${ }^{740}$ The finding was also supported by a recently published dose-response meta-analysis in breast cancer. ${ }^{23}$ On the basis of the studies described above, there is convincing evidence that recreational physical activity after diagnosis is slightly more beneficial against cancer mortality. A possibility is that individuals who participate in physical activity after a cancer diagnosis may be motivated to change their behaviour and adopt a healthier lifestyle following a cancer diagnosis. ${ }^{41}$ Furthermore, a longitudinal study focusing on breast cancer and changes in physical activity before and after diagnosis showed that women who increased physical activity to 9 or more MET-h/week after diagnosis had lower mortality due to breast cancer even if they were inactive before diagnosis, ${ }^{42}$ and encouraged women diagnosed with breast cancer to initiate and maintain a programme of physical activity. Systematic reviews in randomised controlled trials ${ }^{43} 44$ and reviews ${ }^{45-47}$ have concluded that physical activity interventions during and after cancer therapies often result in meaningful and reliable improvements in several supportive care outcomes. These benefits include observed changes in physiological measures, objective performance indicators, self-reported functioning and symptoms, psychological well-being and overall quality of life. These findings may prompt the importance of participating in physical activity, especially after a cancer diagnosis, to gain maximum survival benefits.

Strengths of the meta-analysis

This is a large-scale meta-analysis based on 71 prospective studies. The comprehensiveness of our study is its primary strength. Besides, we provide quantified binary assessments, as well as dose-response relationships between recreational physical activity and cancer mortality. Overall, our results clarify and provide evidence for the WHO guidelines on physical activity at preventing cancer mortality for the general population and also cancer survivors. Our stratified results in the general population study further strengthen our finding by indicating consistent benefits of physical activity in different genders, study locations and durations of follow-up. In addition, we examined the difference between postdiagnostic and prediagnostic physical activity in relation to cancer mortality among cancer survivors in order to better understand the protection against cancer mortality by physical activity at different time points. Various comparisons were conducted to assess the association between physical activity and cancer mortality.

Limitations of the meta-analysis

This meta-analysis has several limitations. First, despite the inclusion of 71 studies in our meta-analysis, we were unable to assess whether the association between physical activity and cancer mortality differed by race, age or cancer type due to insufficient variation among studies in dose-response analyses. In this meta-analysis, the dose-response associations were only explored in subgroup analyses of female, North America, and breast and colorectal cancers. Second, there was significant heterogeneity for several outcomes that could not be explained by geography. The methods of how physical activity was assessed also contributed as physical activity is a complex behaviour with many components, and therefore it is difficult to accurately measure and classify the type of physical activity and its characteristics (ie,
intensity, duration and frequency). Third, conclusion related to the associations between high levels of physical activity and cancer mortality in dose-response analyses should be interpreted with caution, especially in the association curve with an upward tail due to the incomplete extreme value (online supplementary figure S6), even though the the tail of the curve became flattened after omitting outliers. Furthermore, a large portion of the physical activity was self-reported; therefore, some misclassification of activity level was probable and quantitative characterisations should therefore be considered approximate in nature. Moreover, for postdiagnostic physical activity, it is possible that the sickest patients are the ones who are unable to exercise and more likely to die. However, to minimise the possibility of survival bias, the original studies conducted by Meyerhardt et al $l^{41} 48$ and Irwin et al ${ }^{42}$ excluded patients with cancer who either died or recurred within 1 or 2 years of physical activity assessment in their analyses, and the results were not materially altered by that procedure. Besides, all reported outcomes for postdiagnostic physical activity in this meta-analysis have been adjusted for known prognostic variables such as age and stage to reduce the influence of survival bias. Although we used adjusted estimates from included prospective studies, we cannot totally rule out potential residual confounding or confounding by unmeasured factors, such as information on treatment and more details of tumour characteristics, and those unaccounted factors may have an influence on the final results. Finally, our study suggests associations, rather than cause and effect, because of the observational nature of data.

CONCLUSION

In summary, this systematic review and meta-analysis suggests an inverse association between physical activity and cancer mortality. Quantitative data concerning the general population supports the current recommendation of physical activity equivalent to $2.5 \mathrm{~h} /$ week of moderate-intensity (3-6 MET-h/ week), which could have substantial health benefits for individuals. We also found that a minimum $2.5 \mathrm{~h} /$ week of moderate-intensity recreational physical activity conferred protection against cancer mortality among cancer survivors. Therefore, we conclude that the current recommendations concerning physical activity are generally sufficient for reducing cancer mortality. Furthermore, our study displays that physical activity performed before or after cancer diagnosis is related to reduced mortality among cancer survivors. Thus, we infer that

What are the new findings?

- By this meta-analysis based on 71 prospective studies, binary analyses determined that individuals who participated in the most physical activity had an HR of $0.83(95 \% \mathrm{Cl}$ 0.79 to 0.87) and $0.78(95 \% \mathrm{Cl} 0.74$ to 0.84$)$ for cancer mortality in the general population and among cancer survivors, respectively.
- Pooled results indicate the expected inverse non-linear dose-response relationship between recreational physical activity and cancer mortality.
- Our meta-analysis supports that the current recommendation of physical activity (equivalent to $2.5 \mathrm{~h} /$ week of moderate intensity) reduces cancer mortality in both the general population and cancer survivors. We infer that physical activity after a cancer diagnosis may result in significant protection among cancer survivors.

How might it impact on clinical practice in the future?

- Our results might be helpful to inform updates on recommendation concerning the advisable amount of physical activity to reduce cancer mortality in the general population and among cancer survivors.
- Future randomised controlled trials could be conducted to verify the role of physical activity in improving cancer mortality.
- Physical activity after diagnosis presents significant protection against cancer mortality. Therefore, physicians may consider to adopt physical active into the clinical practice of cancer treatments.
physical activity after a cancer diagnosis may result in significant protection among cancer survivors. Future randomised controlled trials are needed to verify the role of physical activity in patients with cancer. More high-quality studies are required to clarify the biological mechanisms underlying this association between physical activity and lower cancer mortality.

Contributors TL, SW (Shaozhong Wei) and LL were involved in the design of the study; TL, YS, SP, QQ, JY, YD and QC acquired data from selected studies; all authors were involved in the analysis and interpretation of the data; TL, SW (Shaozhong Wei), and LL drafted the manuscript; all authors provided critical revision of the manuscript for important intellectual content; TL, YS, SP, SW (Sheng Wei) and SN carried out the statistical analyses. All authors read and approved the manuscript. LL and TL had full access to all of the data in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis. SN and LL are the guarantors.
Funding This work was supported by the National Natural Science Foundation of China (NSFC-81172754 to SW (Sheng Wei) and NSFC-81302491 to LL) and Independent Innovation Fund of Huazhong University of Science and Technology (2013QN001 to LL).
Competing interests None declared.
Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

1 World Health Organization (WHO). NCD mortality and morbidity, 2012. http://www. who.int/gho/ncd/mortality_morbidity/en/ (accessed Jan 2015).
2 Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 2008;67:253-6.
3 Bradshaw PT, Ibrahim JG, Khankari N, et al. Post-diagnosis physical activity and survival after breast cancer diagnosis: the Long Island Breast Cancer Study. Breast Cancer Res Treat 2014;145:735-42.
4 Campbell PT, Patel AV, Newton CC, et al. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol 2013;31:876-85.
5 Kenfield SA, Stampfer MJ, Giovannucci E, et al. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J Clin Oncol 2011;29:726-32.
6 Ibrahim EM, Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol 2011;28:753-65.
7 Je Y, Jeon JY, Giovannucci EL, et al. Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies. Int J Cancer 2013;133:1905-13.
8 World Health Organization (WHO). Global Strategy on Diet, Physical Activity and Health. http://www.who.int/dietphysicalactivity/factsheet_adults/en/ (accessed Jan 2015).

9 US Department of Health and Human Services. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report. Washington DC: 2008:683. http://www.health.gov/paguidelines/ (accessed Jan 2015).
10 Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 2000;32:S498-504.
11 Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007;116:1081-93.

12 Barbaric M, Brooks E, Moore L, et al. Effects of physical activity on cancer survival: a systematic review. Physiother Can 2010;62:25-34.
13 Moher D, Liberati A, Tetzlaff J, et al., PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med 2009;3: e123-30.
14 Wolin KY, Yan Y, Colditz GA. Physical activity and risk of colon adenoma: a meta-analysis. Br J Cancer 2011;104:882-5.
15 Cota GF, de Sousa MR, Fereguetti TO, et al. Efficacy of anti-leishmania therapy in visceral leishmaniasis among HIV infected patients: a systematic review with indirect comparison. PLoS Negl Trop Dis 2013;7:e2195.
16 Greenland S, Robins JM. Estimation of a common effect parameter from sparse follow-up data. Biometrics 1985;41:55-68.
17 Hamling J, Lee P, Weitkunat R, et al. Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med 2008;27:954-70.
18 Samitz G, Egger M, Zwahlen M. Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int J Epidemiol 2011;40:1382-400.
19 Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-60.
20 Sterne JA, Juni P, Schulz KF, et al. Statistical methods for assessing the influence of study characteristics on treatment effects in 'meta-epidemiological' research. Stat Med 2002;21:1513-24.
21 Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 2000;53:1119-29.
22 Woodcock J, Franco OH, Orsini N, et al. Non-vigorous physical activity and all-cause mortality: systematic review and meta-analysis of cohort studies. Int J Epidemiol 2011;40:121-38.
23 Arem H, Moore SC, Patel A, et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med 2015;175:959-67.
24 Zhong S, Jiang T, Ma T, et al. Association between physical activity and mortality in breast cancer: a meta-analysis of cohort studies. Eur J Epidemiol 2014;29:391-404.
25 US Department of Health and Human Services. Physical activity guidelines for Americans. Washington DC: US Department of Health and Human Services, 2008.
26 Friedenreich CM, Neilson HK, Lynch BM. State of the epidemiological evidence on physical activity and cancer prevention. Eur J Cancer 2010;46:2593-604.
27 Bradley RL, Jeon JY, Liu FF, et al. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab 2008;295:E586-94.
28 Chu SH, Park JH, Lee MK, et al. The association between pentraxin 3 and insulin resistance in obese children at baseline and after physical activity intervention. Clin Chim Acta 2012;413:1430-7.
29 Kim ES, Im JA, Kim KC, et al. Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity (Silver Spring) 2007;15:3023-30.
30 Helmrich SP, Ragland DR, Leung RW, et al. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med 1991;325:147-52.
31 Kaaks R, Toniolo P, Akhmedkhanov A, et al. Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst 2000;92:1592-600.
32 Ma J, Pollak MN, Giovannucci E, et al. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 1999;91:620-5.
33 Giovannucci E, Pollak MN, Platz EA, et al. A prospective study of plasma insulin-like growth factor-1 and binding protein-3 and risk of colorectal neoplasia in women. Cancer Epidemiol Biomarkers Prev 2000;9:345-9.
34 Trevisan M, Liu J, Muti P, et al. Markers of insulin resistance and colorectal cancer mortality. Cancer Epidemiol Biomarkers Prev 2001;10: 937-41.
35 Mulligan AM, O'Malley FP, Ennis M, et al. Insulin receptor is an independent predictor of a favorable outcome in early stage breast cancer. Breast Cancer Res Treat 2007;106:39-47.
36 Boyle P, Boniol M, Koechlin A, et al. Diabetes and breast cancer risk: a meta-analysis. Br J Cancer 2012;107:1608-17.
37 McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer 2008;8:205-11.
38 Irwin ML, Varma K, Alvarez-Reeves M, et al. Randomized controlled trial of aerobic exercise on insulin and insulin-like growth factors in breast cancer survivors: the Yale Exercise and Survivorship study. Cancer Epidemiol Biomarkers Prev 2009;18:306-13.
39 Ligibel JA, Campbell N, Partridge A, et al. Impact of a mixed strength and endurance exercise intervention on insulin levels in breast cancer survivors. I Clin Oncol 2008;26:907-12.
40 Schmid D, Leitzmann MF. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol 2014;25:1293-311.

Review

41 Meyerhardt JA, Giovannucci EL, Holmes MD, et al. Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol 2006;24:3527-34.
42 Irwin ML, McTiernan A, Manson JE, et al. Physical activity and survival in postmenopausal women with breast cancer: results from the women's health initiative. Cancer Prev Res (Phila) 2011;4:522-9.
43 Stevinson C, Lawlor DA, Fox KR. Exercise interventions for cancer patients: systematic review of controlled trials. Cancer Causes Control 2004;15:1035-56.
44 Knols R, Aaronson NK, Uebelhart D, et al. Physical exercise in cancer patients during and after medical treatment: a systematic review of randomized and controlled clinical trials. J Clin Oncol 2005;23:3830-42.

45 Galvao DA, Newton RU. Review of exercise intervention studies in cancer patients. J Clin Oncol 2005;23:899-909.
46 Schmitz KH, Courneya KS, Matthews C, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 2010;42:1409-26.
47 Wiggins MS, Simonavice EM. Cancer prevention, aerobic capacity, and physical functioning in survivors related to physical activity: a recent review. Cancer Manag Res 2010;2:157-64.
48 Meyerhardt JA, Giovannucci EL, Ogino S, et al. Physical activity and male colorectal cancer survival. Arch Intern Med 2009;169:2102-8.

Supplementary figure S1 Begg's funnel plots of the association between physical activity and cancer mortality in the general population studies (A), and in cancer survival studies (B). The horizontal line is drawn at the pooled log HR. Diagonal lines indicate the pseudo 95% confidence interval.

Supplementary figure S2 Sensitivity analyses for the association between physical activity and cancer mortality in the general population studies (A) and in cancer survival studies (B).

A Sensitivity analysis in the general population studies

Meta-analysis estimates, given named study is omitted

B Sensitivity analysis in cancer survival studies

Supplementary figure S3 Dose-response analysis between cancer mortality and recreational physical activity in the general population in the subgroup of Asian (A), < 10 years follow-up (B), North America (C) and ≥ 10 years follow-up (D). The solid line and the long dash line represent the estimated relative risk and its 95% confidence interval. Short dash line represents the linear relationship.

Supplementary figure S4 Dose-response analysis between cancer mortality and recreational physical activity among cancer survivors in the subgroup of female (A), North America (B), ≥ 10 years follow-up (C), breast cancer (D) and colorectal cancer (E). The solid line and the long dash line represent the estimated relative risk and its 95% confidence interval. Short dash line represents the linear relationship.

Supplementary figure S5 Dose-response relation between cancer mortality and recreational physical activity in post-diagnosis and pre-diagnosis. Post-diagnosis physical activity in breast cancer (A), prediagnosis physical activity in breast cancer (B), post-diagnosis physical activity in colorectal cancer (C). The solid line and the long dash line represent the estimated relative risk and its 95% confidence interval. Short dash line represents the linear relationship.

Supplementary figure S6 Dose-response relation between recreational physical activity and cancer mortality in models without removing extreme value among cancer survivors. Overall cancer mortality (A), in female (B), in breast cancer (C). The solid line and the long dash line represent the estimated relative risk and its 95% confidence interval. Short dash line represents the linear relationship.

Supplementary table S1 Characteristics of the study included in the meta-analysis on physical activity and cancer mortality

	Author (year) \& Country ${ }^{\text {ref }}$	Study name	Gender	Age(y) at recruitment	No. death	No. case	No. cohort	Median follow-up(years or person-years)	Cancer type	$\begin{aligned} & \hline \begin{array}{l} \text { Type of } \\ \text { activity } \end{array} \\ & \hline \end{aligned}$	Main results	Adjustment factors
1	$\begin{aligned} & \text { Arraiz (1992) } \\ & \text { Canada }^{1} \end{aligned}$	A population-ba sed cohort study	Both	30-69	229		12218	7	All	Total physical activity	Very active: 1.00 Active: 1.40 (0.80-2.30) Moderate: 0.80 (0.40-1.40) Inactive: 1.20 ($0.70-1.90$)	Age, sex, smoking and alcohol consumption
2	$\begin{aligned} & \text { Kampert (1996) } \\ & \text { USA }{ }_{2} \end{aligned}$	A prospective observational study	Both	20-88	223		25341	8	All	Recreational physical activity	$\begin{aligned} & \text { (Mean } \pm \text { SD)s } \\ & \text { Male } \\ & \text { Q1(622 } \pm 151 \mathrm{~s}): 1.00 \\ & \text { Q2(817 } \pm 125 \mathrm{~s}): 0.55(0.44,0.7) \\ & \text { Q3(950 } \pm 122 \mathrm{~s}): 0.61(0.48,0.78) \\ & \text { Q4(1097 } \pm 133 \mathrm{~s}): 0.52(0.41,0.66) \\ & \text { Q5(1407 } \pm 189 \mathrm{~s}): 0.49(0.37,0.64) \\ & \text { Female } \\ & \text { Q1(377 } \pm 109 \mathrm{~s}): 1.00 \\ & \text { Q2(536 } \pm 107 \mathrm{~s}): 0.53(0.30,0.95) \\ & \text { Q3(628 } \pm 116 \mathrm{~s}): 0.56(0.31,1.01) \\ & \text { Q4(763 } \pm 129 \mathrm{~s}): 0.22(0.10,0.49) \\ & \text { Q5(1040 } \pm 215 \mathrm{~s}): 0.37(0.19,0.72) \end{aligned}$	Baseline differences in age, examination year, cigarette smoking, chronic illnesses, and electrocardiogram abnormalities
3 8	Rosengren (1997) Sweden ${ }^{3}$	The Multifactor Primary Prevention Study	Male	47-55	723		7142	20	All	Recreational physical activity	Sedentary, moderately active, regular exercise, athletic sports. Two most active groups compared to the sedentary group: $0.78(0.62,0.99)$	Age, serum cholesterol. Smoking, alcohol abuse, and manual versus nonmanual occupational class
4	$\operatorname{Smith}^{\text {STK }^{4}}$	The Whitehall Study	Male	40-64	832		6702	25	All	Recreational physical activity	Inactive: 1.28 (1.1, 1.6) Moderately active: $1.13(0.9,1.4)$ Active: 1.00 Active group compared to inactive group with crude HR: 0.65 (0.53 , 0.80)	Age, employment grade, BMI, smoking
5	$\begin{aligned} & \text { Batty (2001) } \\ & \text { UK }^{5} \end{aligned}$	The Whitehall Study	Male	40-64	1151		18403	25	All	Travel activity Walking or bicycling on the way to work	```(Min/day) 0-9:1.00 10-19: 1.05 (0.90, 1,20) 20: 0.99 (0.90, 1.10)```	Age, employment grade, BMI, smoking,
6	$\begin{aligned} & \text { Kilander (2001) } \\ & \text { Sweden }^{6} \end{aligned}$	$\begin{array}{lr}\text { A } & \text { cohort } \\ \text { study } & \text { in } \\ \text { Sweden } & \end{array}$	Male	48.6-51.1	216		2301	25.7	All	Recreational physical activity	Low: $1.09(0.73,1.64)$ Medium: $0.96(0.70,1.33)$ High: 1.00	Age, body height, diastolic blood pressure, systolic blood pressure, b-glucose, BMI, s-triglycerides, s-cholesterol

7	Lee (2002) Korea ${ }^{7}$	The Korea Medical Insurance Corporation (KMIC)	Male	35-64	883	452645	5	Lung cancer	Recreational physical activity	$\begin{aligned} & \text { No: } 1.00 \\ & \text { Yes: } 0.80(0.70,0.90) \end{aligned}$	Age
8	$\begin{aligned} & \text { Lee (2003) } \\ & \text { USA }^{8} \end{aligned}$	The College Alumni Health Study	Both	47.1 (mean age)	212	32687	5	Pancreatic cancer	Recreational physical activity	$\begin{aligned} & (\mathrm{KJ} / \mathrm{wk}) \\ & \text { <2100: } 1.00 \\ & \text { 2100-4199: } 0.98(0.65,1.49) \\ & \text { 4200-10499: } 0.92(0.62,1.35) \\ & \geq 10500: 1.31(0.69,1.92) \end{aligned}$	Age (single years), sex, cigarette smoking, diabetes mellitus
9	$\begin{aligned} & \mathrm{Hu}(2005) \\ & \text { Finland }{ }^{9} \end{aligned}$	Prospective follow-up study	Both	25-64	7394	47212	17.7	All	Total physical activity	Male Low: 1.00 Moderate: $0.83(0.69,1.00)$ High: $0.79(0.65,0.96)$ Female Low: 1.00 Moderate: $0.85(0.71,1.01)$ High: 0.73 ($0.60,0.88$)	Age, study year, education, smoking status, systolic blood pressure, cholesterol, BMI
10	$\begin{aligned} & \text { Nilson (2006) } \\ & \text { Norway }{ }^{10} \end{aligned}$	$\begin{aligned} & \text { The HUNT } \\ & \text { study } \end{aligned}$	Male	41-100	276	29110	17.5	Prostate cancer	Recreational physical activity	No: 1.00 Low: 0.71 ($0.50,1.02$) Medium: $0.81(0.60,1.10)$ High: 0.67 ($0.78,0.94$)	Age, BMI, marital status , education, alcohol consumption, smoking status
11	Schnohr (2006) Denmark ${ }^{11}$	The Copenhagen City Heart Study	Both	20-93	632	4894	20	All	Recreational physical activity	$\begin{aligned} & (\mathrm{h} / \mathrm{wk}) \\ & \quad<2: 1.00 \\ & \text { 2-4: } 0.77(0.61-0.97) \\ & \text { >4: } 0.73(0.56-0.95) \end{aligned}$	Age, sex, smoking, total-cholesterol, high-density, lipoprotein-cholesterol, systolic blood pressure/antihypertensive drugs, diabetes, alcohol consumption, body mass index, education, income and forced respiratory, volume in the first second of expiration (FEV1), measured at the second examination
12	Huxley (2007) Asia-Pacific region ${ }^{12}$	The Asia Pacific Cohort Studies Collaboration (APCSC)	Both	47	751	539201	6.8	Colorectal cancer	Total physical activity	No: 1.00 Yes: $0.77(0.60,0.98)$	Smoking, diabetes, and alcohol
13	$\begin{aligned} & \operatorname{Lin}(2007) \\ & \text { Japan }^{13} \end{aligned}$	The Japanese Collaborative Cohort study for Evaluation	Both	40-79	402	110792	13	Pancreatic cancer	Recreational physical activity	$\begin{aligned} & \text { Walking (min/day) } \\ & \text { Male } \\ & <30: 1.00 \\ & \text { 30: } 0.84(0.46,1.50) \end{aligned}$	Age, BMI, cigarette smoking

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17 \& Orsini (2009) Sweden ${ }^{17}$ \& A population-ba sed cohort of Swedish men \& Male \& 45-79 \& 199 \& 45887 \& 9

8.9 \& Prostate cancer \& Total physical activity \& $$
\begin{aligned}
& \text { (MET-h/wk) } \\
& \text { 37(<39): } 1.00 \\
& \text { 41(39-42.2): } 0.96(0.53-1.75) \\
& \text { 44(42.5-46): } 1.02(0.55-1.87) \\
& \text { 48(>46): } 0.98(0.53-1.83)
\end{aligned}
$$ \& Age, waist - hip ratio, height, diabetes, alcohol consumption, smoking status, years of education, total energy intake, consumption of dairy product and red meat and parental history with respect to prostate cancer.

\hline 18 \& \[
$$
\begin{aligned}
& \text { Stevens (2009) } \\
& \text { UK }^{18}
\end{aligned}
$$

\] \& | Million |
| :--- |
| Women Study | \& Female \& 55.9 ± 4.5 \& 1710 \& \[

$$
\begin{aligned}
& 130000 \\
& 0
\end{aligned}
$$

\] \& 8.9 \& Pancreatic cancer \& Recreational physical activity \& \[

$$
\begin{gathered}
\text { (Time/wk) } \\
<1: 1.0 \\
1: 0.87 \\
2-3: 1.03 \\
\geq 4: 1.01
\end{gathered}
$$
\] \& Age, region, socioeconomic status, smoking, BMI and height

\hline 19 \& | Autenrieth |
| :--- |
| (2011) |
| Germany | \& | The second MONICA/K ORA |
| :--- |
| Augsburg survey | \& Both \& 25-74 \& 326 \& 4672 \& 17.8 \& All \& Recreational physical activity \& \[

$$
\begin{aligned}
& \text { (MET-h/wk) } \\
& \quad \text { 0: } 1.00 \\
& \text { <3: } 0.58(0.42-0.80) \\
& \text { 3-6: } 0.56(0.40-0.77) \\
& >6: 0.36(0.23-0.59)
\end{aligned}
$$
\] \& Sex, BMI, systolic blood pressure, total-to-HDL cholesterol ratio, education, smoking status, alcohol consumption, myocardial infarction, stroke, diabetes, cancer, self-reported limited physical activity due to health problems, and other domains of physical activity

\hline 20 \& $$
\begin{aligned}
& \text { Batty (2011) } \\
& \text { UK }^{20}
\end{aligned}
$$ \& The Whitehall study \& Male \& 40-69 \& 578 \& 17934 \& 40 \& Prostate cancer \& Recreational physical activity \& \[

$$
\begin{aligned}
& \text { Recreational physical activity } \\
& \text { Low: } 1.00 \\
& \text { Middle: } 1.24(0.88-1.73) \\
& \text { High: } 1.12(0.76-1.64) \\
& \text { Travel activity (Min/day) } \\
& \text { 0-9: } 1.00 \\
& \text { 10-19: } 1.24(0.88-1.73) \\
& \text { 20-29: } 1.26(0.92-1.72) \\
& \text { 30-39: } 1.3(0.86-1.97) \\
& \geq 40: 1.65(0.87-3.15)
\end{aligned}
$$
\] \& Age at risk, BMI, plasma cholesterol, socio-economic status, diabetes/blood glucose,marital status, FEV1, height, smoking, and diastolic and systolic blood pressure

\hline 21 \& | Borch (2011) |
| :--- |
| Norway ${ }^{21}$ | \& | The |
| :--- |
| Norwegian |
| Women and Cancer |
| (NOWAC) |
| Study | \& Female \& 30-70 \& 1584 \& 66136 \& 12 \& All \& Recreational physical activity \& Ten levels

1: $1.32(0.96-1.81)$
2: $1.48(1.19-1.84)$
3: $1.26(1.06-1.5)$
4: $1.07(0.91-1.25)$
5: 1.00
6: $0.88(0.75-1.03)$
7: $0.90(0.76-1.07)$
8: $0.92(0.74-1.13)$ \& BMI, height, smoking status, years of smoking, amount of smoking, alcohol intake, menopausal status, age at first birth, parity, hormone therapy use, cardiovascular disease diabetes mellitus and

\hline
\end{tabular}

study (EPIC)

China Men's Health
Study
(SMHS)

40-74
4
1053
$\begin{array}{lll} & 61477 & 5.48\end{array}$

All
都Total physical activity

(MET-h/wk)

No regular exercise: 1.00 <13.9: 0.81 (0.68-0.96) ≥ 13.9 : 0.81 (0.86-0.94)

Breast cancer \quad Running and Walking	$($ MET- $\mathrm{h} / \mathrm{wk})$	
		$<13.9: 1.00$
		$7.5-12.5: 0.47(0.21-0.97)$
	$\geq 12.5: 0.61(0.38-1.01)$	

All

Recreat activity

menopause status and all WCRF/AICR components were mutually adjusted. Age, educational level, income, occupation, alcohol consumption, pack-years of smoking, daily intake of energy, re daily intake of ene meat, fruits, and activity other than activity other than exercise, body mass index, and history of cardiovascular disease, diabetes, hypertension, chronic liver disease, o pulmonary disease
Follow-up age, race, menopause, oral contraceptive and estrogen/progesterone use, BMI
Age, education level,
Hong Kong ladder, tota energy intake, DQI,
smoking, and alcohol use, BMI, frailty index, living arrangement, and level of leisure time physical activity/housework

Inous/muscle-conditioning
Inactive: 1.00
Active: 0.89 (0.57-1.39) Female

Light
Inactive: 1.00
Active: 0.70 (0.41-1.21)

Moderate

Inactive: 1.00
Active: 0.38 (0.14-1.07)
Strenous/muscle-conditioning
Inactive: 1.00
Inactive: 1.00
Active: 0.93 (0.29-2.95)

All cancers

Never: 1.00

<1: 0.95 (0.89-1.01)
1-3: 0.93 (0.88-0.98
4-7: 0.90 (0.85-0.95)
7: 0.89 (0.84-0.94)
Lymphocytic leukemia Never: 1.00
<1: 0.96 (0.48-1.89)
1-3: 1.3 (0.76-2.21)
4-7: 0.65 (0.35-1.19)
7-7:0.65 (0.35-1.19) Colon Never: 1.00
Never: 1.00
<1: 0.80 (0.63-1.01)
1-3:0.85 (0.70-1.02) 1-3: $0.85(0.70-1.02)$ >7: 0.70 (0.57-0.85) Liver
Never: 1.00
1: 0.79 (0.54-1.14
1-3: 0.90 (0.68-1.21) 4-7: 0.64 (0.47-0.88) $>7: 0.71$ (0.52-0.98) Oral cavity and pharynx Never: 1.00
<1: 0.83 (0.48-1.44)
1-3: 0.79 (0.51-1.24
4-7: 0.76 (0.48-1.21)
$>7: 0.75$ (0.47-1.20)
Non-Hodgkins lymphoma

$$
\text { Never: } 1.00
$$

<1: 1.19 (0.90-1.58)
1-3: 0.76 (0.58-0.98)
4-7: 0.83 (0.64-1.06) >7: $0.80(0.62-1.06)$ Esophagus
Never: 1.00
<1:0.92 (0.65-1 29)
1-3:0.91 (0.69-1.20)
4-7:0.96 (0.73-1.27)
>7: 0.80 (0.60-1.08)

Myeloma

Never: 1.00
<1: 0.75 (0.49-1.14)
1-3: 0.56 (0.40-0.81 4-7: 0.77 (0.55-1.07)

7: 0,84 (0.77-0.92

Lung
Never: 1.00
<1: 0.85 (0.76-0.95)
-3: 0.92 (0.84-1.00)
-7: 0.82 (0.75-0.90)
7: 0.84 (0.77-0.92)
Myeloid/monocytic
Never: 1.00
<1: 1.27 (0.86-1.86)
<1: 1.27 (0.86-1.86)
1-3: 0.85 (0.60-1.21) 4-7: 1.10 (0.79-1.54) 7: 0.86 (0.60-1.22) Stomach
Never: 1.00
1: 1.00 (0.65-1.56)
1-3: 0.99 (0.69-1.42)
4-7: 0.97 (0.67-1.40
$>7: 0.90$ (0.61-1.31)
Ovarian
Never: 1.00
<1: 0.92 (0.62-1.36)
1-3: 0.83 (0.59-1.150
4-7: 0.87 (0.63-1.21
$>7: 0.91$ (0.65-1.31)
Prostate
Never: 1.00
<1: 0.97 (0.69-1.37)
1-3: 0.79 (0.59-1.06
4-7: 1.03 (0.78-1.37) $>7: 0.93$ (0.69-1.240 Bladder
Never: 1.00
Never: 1.00
<1: $1.25(0.84-1.86)$ 1-3: 0.97 (0.68-1.38) -7: 0.95 (0.67-1.36) Breast
Never: 1.00
<1: 1.21 (0.82-1.80)
1-3:0.92 (0.65-1.29)
4-7: 0.97 (0.68-1.37)
>7: 1.08 (0.76-1.53)
Brain
Never: 1.00
<1: 1.14 (0.78-1.66)

Never: 100
1: 1.52 (0.85-2.69)
-3: 0.79 (0.45-1.38)
4-7: 1.13 (0.66-1.93)
>7. 1.21 (0.70-2.08)
Pancreas
Never: 1.00
1:1.35 (1.07-1.70)
<1: $1.35(1.07-1.70)$
1-3: $1.14(0.80-1.64)$
1-3: 1.14 (0.80-1.64)
7:1.25 (1.03-1.53)
Kidney
Never: 1.00
<1: 1.10 (0.71-1.70)
1-3: 1.14 (0.80-1.64)
4-7: 1.47 (1.03-2.09)
$>7: 1.42$ (0.98-2.03)

Rectum

Never: 1.00
<1: 1.26 (0.64-2.48)
1-3: 1.57 (0.90-2.71)
4-7: 1.27 (0.72-2.25)
>7: 1.63 (0.93-2.84)
Recreational physical <30 min/day or <5 day/wk or <7 of Age, sex, education, the previous 10 years of moderate or fast walking and/or moderate or strenuous activity: 1.00
>30 minutes/day of moderate or fast 30 minutes/day of moderate or valking and/or moderate renuous activity on at 10 days/ in least 7 of the past 10 years: 0.91 0.79-1.04)
race/ethnicity, marital status, PSA screening in previous 2 years, colonoscopy or sigmoidoscopy in previous 10 years, cancer diagnosed in first-degree relatives, non-steroidal anti-inflammatory medication and regular or low-dose aspirin use ock-years of smoking pack-years of smok average daily energy average daily energy reproductive factors were included for women, including age at

None: 1.00

A few time/year: 1.10(0.60-2.00)
A few time/month:1.20(0.40-2.60)
1 time/wk: 0.70 (0.30-1.70)
>1 time/wk: 1.00 (0.50-1.90)
Exercise
None: 1.00
A few time/year: 1.10 (0.60-2.00)
A few time/month: 1.20 (0.40-2.60)
1 time/wk: 0.70 (0.30-1.70)
>1 time/wk: 1.00 (0.50-3.20)
Jogging
None: 1.00
A few time/year: 1.50 (0. 50-4 10)
A few time/month: 1.90 (0.70-5.40)
1 time/wk: 1.80 (0.40-7.50)
>1 time/wk: 1.80 (0.40-7.50)
Swimming
None: 1.00
A few time/year: 1.20 (0.60-2.400
A few time/month: 1.00 (0.50-2.00)
1 time/wk: 1.20 (0.70-2.30)
>1 time/wk: 0.90 (0.50-1.50)
Gardening
None: 1.00
A few time/year: 1.00 (0.60-1.80)
A few time/month: 1.60 (0.90-2.70)
1 time/wk: 1.00 (0.60-1.70)
>1 time/wk: 0.80 (0.50-1.40)
Breast cancer
MET-h/wk)
Post-diagnosi
<3: 1.00
3-8.9: 0.80 (0.60-1.06)
9-14.9: 0.50 (0.31-0.82)
15-23.9:0.56 (0.38-0.84)
15-23.9: 0.56 (0.38-0.84)
$\geq 24.0 .60$ (0.40-0.89)
<3:1.00
<3: 1.00
3-8.9: 0.65 (0.43-0.97)
9-14.9: 0.35 (0.18-0.68)
15-23.9: 0.63 (0.39-1.04
$\geq 24: 0.61$ ($0.37-0.99$)
Pre-diagnosis (BMI 25)
<3: 1.00
3-8.9: 1.01 (0.66-1.55)
9-14.9: 0.81 (0.38-1.72)

Age, interval between diagnosis and physical activity assessment, body mass index, menopasal status and hormone therapy use, age at first birth and paity, al
contraceptive use, disease stage, radiation treatment, chemotherapy, and

41	$\begin{aligned} & \text { Abrahamson } \\ & (2006) \\ & \text { USA }^{41} \end{aligned}$	A follow-up study	Female	20-54	212	1264	8.5	Breast cancer	Recreational physical activity	15-23.9: 0.44 (0.21-0.93) $\geq 24: 0.52(0.26-1.06)$ (MET-h/wk) Pre-diagnosis 1.6-16.6: 1.00 16.7-29.4: $0.74(0.50-1.11)$ 29.5-43.0: $0.97(0.66-1.41)$ 43.1-98.0: $1.12(0.78-1.62)$	Stage and income
42	Haydon (2006) Austrialia ${ }^{42}$	The Melbourne Collaborative Cohort Study (MCCS)	Both	25-75	181	526	5.5	Colorectal cancer	Recreational physical activity	Pre-diagnosis No exercise: 1.00 Exercise: 0.73 (0.54-1.00)	Age, sex, stage
43	$\begin{aligned} & \text { Meyerhardt } \\ & (2006) \\ & \text { USA }^{43} \end{aligned}$	The Nurses' Health Study (NHS) cohort	Female	20-54	72	554	9.6	Colorectal cancer	Recreational physical activity	(MET-h/wk) Post-diagnosis <3: 1.00 3-8.9: 0.92 (0.50-1.69) 9-17.9: 0.57 (0.27-1.20) ≥ 18 : 0.39 (0.18-0.82) Pre-diagnosis <3: 1.00 3-8.9: 0.83 (0.45-1.53) 9-17.9: 1.05 (0.56-1.99) ≥ 18 : 0.86 (0.44-1.67)	BMI, stage of disease, grade of tumor differentiation, colon or rectal primary, age at diagnosis, year of diagnosis, receipt of chemotherapy, time from diagnosis to physical activity measurement, change in body mass index before and after diagnosis, smoking status
44	$\begin{aligned} & \text { Holick (2008) } \\ & \text { USA }{ }^{44} \end{aligned}$	Collaborative Women's Longevity Study (CWLS)	Female	20-79	109	4482	5.6	Breast cancer	Recreational physical activity		Age at diagnosis, stage of disease at diagnosis, state of residence at diagnosis, and interval between diagnosis and physical activity assessment
45	$\begin{aligned} & \text { Sundelof (2008) } \\ & \text { Sweden }{ }^{45} \end{aligned}$	Swedish Oesophageal and Cardia Cancer study	Both	1	510	580	10	Oesophageal adenocarcino ma, Oesophageal	Recreational physical activity	Pre-diagnosis Oesophageal adenocarcinoma $\begin{aligned} & 1^{\text {st }} \text { (low): } 1.00 \\ & 2^{\text {nd }}: 0.90(0.50-1.50) \\ & \hline \end{aligned}$	Age, sex, education, symptomatic gastroesophageal reflux, BMI, tobacco smoking,

Moderate-vigorous	
<5.3: 1.00	
5.3-15: 0.77 (0.44-1.34)	
15-27: 0.47 (0.24-0.91)	
>27: 0.90 (0.51-1.58)	
Moderate (h / wk)	
<1: 1.00	
1-3: 0.65 (0.36-1.26)	
3-6: 0.69 (0.40-1.19)	
>6: 0.73 (0.40-1.33)	
Vigorous (h / wk)	
0: 1.00	
0-1: 0.79 (0.42-1.48)	
>1: 1.10 (0.68-1.80)	
Pre-diagnosis	Race, BMI, total caloric
$\leq 0.5 \mathrm{~h} / \mathrm{wk} / \mathrm{y}$ of any activity: 1.00	intake, number of
$0.51-3.0 \mathrm{~h} / \mathrm{wk} / \mathrm{y}$ of moderate or strenuous activity: 0.65 (0.45-0.93)	comorbid conditions, and estrogen receptor status
$>3.0 \mathrm{~h} / \mathrm{wk} / \mathrm{y}$ either activity type: $0.53 \text { (0.35-0.80) }$	
(MET-h/wk)	Age, tumor stage,
Recreational	treatment (chemotherapy,
$\leq 5: 1.00$	hormone therapy and
5-10: 0.68 (0.47-0.98)	radiation therapy), SBR
10-19: 0.65 (0.45-0.94)	grade, BMI and other
>19:0.54 (0.36-0.79)	comorbidity conditions
Total	
<95: 1.00	
95-120: 0.70 (047-1.04)	
120-150: 0.81 (0.56-1.18)	
>151: 0.79 (0.53-1.17)	
Household	
$\leq 5: 1.00$	
5-10: 0.70 (0.47-1.04)	
10-19:0.81 (0.56-1.18)	
$>19: 0.79$ (0.53-1.17)	
Moderate	
0-1.4: 1.00	
1.4-3.9: 0.67 (0.50-0.91)	
≥ 3.9 : 0.56 (0.38-0.82)	
Vigorous	
<0.03: 1.00	
$\geq 0.03: 0.74$ (0.56-0.98)	
Pre-diagnosis (h/wk)	Alcohol, smoking, physical activity, body
Inactive <2: 1.00	mass index, hormone

61	$\begin{aligned} & \text { Cleveland } \\ & (2012) \\ & \text { USA }^{61} \end{aligned}$	The Long Island Breast Cancer Study Project	Female	1	120	1273	5.56	Breast cancer	Recreational physical activity	Pre-diagnosis (MET-h/wk) Total $0: 1.00$ 0-9: $0.61(0.40-0.92)$ $\geq 9: 0.66(0.42-1.06)$ Moderate $0: 1.00$ 0-9: $0.60(0.39-0.91)$ $\geq 9: 0.73(0.44-1.20)$ Vigorous $0: 1.00$ $0-9: 1.61(0.75-1.79)$ $\geq 9: 0.83(0.59-0.91)$	Age at diagnosis, body mass index and menopausal status
62	$\begin{aligned} & \text { Kuiper (2012) } \\ & \text { USA }{ }^{62} \end{aligned}$	WHI(The Women's Health Initiative)	Female	50-79	171	1339	11.9	Colorectal cancer	Recreational physical activity	```(MET-h/wk) Pre-diagnosis 0: 1.00 0-2.9: 0.98 (0.58-1.66) 3.0-8.9: 1.01 (0.65-1.57) 9.0-17.9: 0.74 (0.46-1.20) \(\geq 18.0\) : 0.68 (0.41-1.13) Post-diagnosis 0: 1.00 0-2.9: 0.49 (0.21-1.14) 3.0-8.9: 0.30 (0.12-0.73) 9.0-17.9: 0.53 (0.22-1.25) \(\geq 18.0\) : 0.29 (0.11-0.77)```	Age at diagnosis, study arm, BMI, tumor stage, ethnicity, education, alcohol, smoking, and hormone therapy use
63	$\begin{aligned} & \text { Arem (2013) } \\ & \text { USA }^{63} \end{aligned}$	WHI(The Women's Health Initiative)	Female	50-79	66	983	5.3	Endometrial cancer	Recreational physical activity	```Pre-diagnosis (MET-h/wk) 0: 1.00 0-11.26: 0.51 (0.26-1.01) \(\geq 11.26\) : 1.05 (0.79-1.38)```	Age, BMI, tumor grade, tumor stage, and age at menarche, and lag time from baseline measure to endometrial cancer diagnosis
64	$\begin{aligned} & \text { Arem (2013) } \\ & \text { USA }^{64} \end{aligned}$	The NIH-AARP Diet and Health Study	Female	50-71	133	1400	13	Endometrial cancer	Recreational physical activity	Pre-diagnosis (h/wk) Moderate-vigorous Never/rarely: 1.00 <1: 1.26 (0.59-2.70) 1-3: 0.45 (0.19-1.04) 4-7: 0.96 (0.46-2.03) >7: 0.91 (0.43-1.93)	Tumor grade, tumor stage, surgery, chemotherapy, race, family history of breast cancer, diabetes, smoking status, and continuous body mass index
65	$\begin{aligned} & \text { Campbell (2013) } \\ & \text { USA }{ }^{65} \end{aligned}$	CPS-II	Both	1	379	2293	8.1	Colorectal cancer	Recreational physical activity	(MET-h/wk) Pre-diagnosis <3.5: 1.00	Age at diagnosis, sex, smoking status, body mass index, red meat

Abbreviations: MET=Metabolic equivalents of task; BMI=body mass index

Supplementary References

1 Arraiz GA, Wigle DT, Mao Y. Risk assessment of physical activity and physical fitness in the Canada Health Survey mortality follow-up study. J Clin Epidemiol 1992;45:419-28.

2 Kampert JB, Blair SN, Barlow CE, et al. Physical activity, physical fitness, and all-cause and cancer mortality: a prospective study of men and women. Ann Epidemiol 1996;6:452-7.

3 Rosengren A, Wilhelmsen L. Physical activity protects against coronary death and deaths from all causes in middle-aged men. Evidence from a 20-year follow-up of the primary prevention study in Goteborg. Ann Epidemiol 1997;7:69-75.
4 Smith G, Shipley MJ, Batty GD, et al. Physical activity and cause-specific mortality in the Whitehall study. Public Health 2000;114:308-15.
5 Batty GD, Shipley MJ, Marmot M, et al. Physical activity and cause-specific mortality in men: further evidence from the Whitehall study. Eur J Epidemiol 2001;17:863-9.

6 Kilander L, Berglund L, Boberg M, et al. Education, lifestyle factors and mortality from cardiovascular disease and cancer. A 25-year follow-up of Swedish 50-year-old men. Int J Epidemiol 2001;30:1119-26.

7 Lee SY, Kim MT, Jee SH, et al. Does hypertension increase mortality risk from lung cancer? A prospective cohort study on smoking, hypertension and lung cancer risk among Korean men. J Hypertens 2002 20:617-22.
8 Lee IM, Sesso HD, Oguma Y, et al. Physical activity, body weight, and pancreatic cancer mortality. Br J Cancer 2003;88:679-83.
9 Hu G, Tuomilehto J, Silventoinen K, et al. The effects of physical activity and body mass index on cardiovascular, cancer and all-cause mortality among 47212 middle-aged Finnish men and women. Int J Obes (Lond) 2005;29:894-902.
10 Nilsen TI, Romundstad PR, Vatten LJ. Recreational physical activity and risk of prostate cancer: A prospective population-based study in Norway (the HUNT study). Int J Cancer 2006;119:2943-7.
11 Schnohr P, Lange P, Scharling H, et al. Long-term physical activity in leisure time and mortality from coronary heart disease, stroke, respiratory diseases, and cancer. The Copenhagen City Heart Study. Eur J Cardiovasc Prev Rehabil 2006;13:173-9.
12 Huxley R. The role of lifestyle risk factors on mortality from colorectal cancer in populations of the Asia-Pacific region. Asian Pac J Cancer Prev 2007;8:191-8.
13 Lin Y, Kikuchi S, Tamakoshi A, et al. Obesity, physical activity and the risk of pancreatic cancer in a large Japanese cohort. Int J Cancer 2007;120:2665-71.
14 Matthews CE, Jurj AL, Shu XO, et al. Influence of exercise, walking, cycling, and overall nonexercise physical activity on mortality in Chinese women. Am J Epidemiol 2007;165:1343-50.
15 Orsini N, Bellocco R, Bottai M, et al. Combined effects of obesity and physical activity in predicting mortality among men. J Intern Med 2008 $264: 442-51$.
16 van Dam RM, Li T, Spiegelman D, et al. Combined impact of lifestyle factors on mortality: prospective cohort study in US women. BMJ $2008337:$ al440.
17 Orsini N, Bellocco R, Bottai M, et al. A prospective study of lifetime physical activity and prostate cancer incidence and mortality. Br J Cancer 2009;101:1932-8.
18 Stevens RJ, Roddam AW, Spencer EA, et al. Factors associated with incident and fatal pancreatic cancer in a cohort of middle-aged women. Int J Cancer 2009 124:2400-5.
19 Autenrieth CS, Baumert J, Baumeister SE, et al. Association between domains of physical activity and all-cause, cardiovascular and cancer mortality. Eur J Epidemiol 2011;26:91-9.
20 Batty GD, Kivimaki M, Clarke R, et al. Modifiable risk factors for prostate cancer mortality in London: forty years of follow-up in the Whitehall study. Cancer Causes Control 2011;22:311-8.
21 Borch KB, Braaten T, Lund E, et al. Physical activity and mortality among Norwegian women - the Norwegian Women and Cancer Study. Clin Epidemiol 2011;3:229-35.
22 Laukkanen JA, Rauramaa R, Makikallio TH, et al. Intensity of leisure-time physical activity and cancer mortality in men. Br J Sports Med 2011;45:125-9.
23 McCullough ML, Patel AV, Kushi LH, et al. Following cancer prevention guidelines reduces risk of cancer, cardiovascular disease, and all-cause mortality. Cancer

Epidemiol Biomarkers Prev 2011;20:1089-97.

24 Morrison DS, Batty GD, Kivimaki M, et al. Risk factors for colonic and rectal cancer mortality: evidence from 40 years' follow-up in the Whitehall I study. J Epidemiol Community Health 2011;65:1053-8.
25 Nakamura K, Nagata C, Wada K, et al. Cigarette smoking and other lifestyle factors in relation to the risk of pancreatic cancer death: a prospective cohort study in Japan. Jpn J Clin Oncol 2011;41:225-31.
26 Wen CP, Wai JP, Tsai MK, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 2011;378:1244-53.
27 Mok Y, Won S, Kimm H, et al. Physical Activity Level and Risk of Death: The Severance Cohort Study. J Epidemiol 2012.
28 Parekh N, Lin Y, Craft LL, et al. Longitudinal associations of leisure-time physical activity and cancer mortality in the Third National Health and Nutrition Examination Survey (1986-2006). J Obes 2012;2012:518358.
29 Sahlqvist S, Goodman A, Simmons RK, et al. The association of cycling with all-cause, cardiovascular and cancer mortality: findings from the population-based EPIC-Norfolk cohort. BMJ Open 2013;3:e003797.
30 Vergnaud AC, Romaguera D, Peeters PH, et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research guidelines and risk of death in Europe: results from the European Prospective Investigation into Nutrition and Cancer cohort study1,4. Am J Clin Nutr 2013;97:1107-20.
31 Wang N, Zhang X, Xiang YB, et al. Associations of Tai Chi, walking, and jogging with mortality in Chinese men. Am J Epidemiol 2013;178:791-6.
32 Williams PT. Breast cancer mortality vs. exercise and breast size in runners and walkers. PLoS One 2013;8:e80616.
33 Yu R, Leung J, Woo J. Housework reduces all-cause and cancer mortality in Chinese men. PLoS One 2013;8:e61529.
34 Arem H, Moore SC, Park Y, et al. Physical activity and cancer-specific mortality in the NIH-AARP Diet and Health Study cohort. Int J Cancer 2014;135:423-31.
35 Hastert TA, Beresford SA, Sheppard L, et al. Adherence to the WCRF/AICR cancer prevention recommendations and cancer-specific mortality: results from the Vitamins and Lifestyle (VITAL) Study. Cancer Causes Control 2014;25:541-52.
36 Wanner M, Tarnutzer S, Martin BW, et al. Impact of different domains of physical activity on cause-specific mortality: a longitudinal study. Prev Med 2014;62:89-95.
37 Rohan TE, Fu W, Hiller JE. Physical activity and survival from breast cancer. Eur J Cancer Prev 1995;4:419-24.
38 Enger SM, Bernstein L. Exercise activity, body size and premenopausal breast cancer survival. Br J Cancer 2004;90:2138-41.
39 Borugian MJ, Sheps SB, Kim-Sing C, et al. Insulin, macronutrient intake, and physical activity: are potential indicators of insulin resistance associated with mortality from breast cancer? Cancer Epidemiol Biomarkers Prev 2004 13:1163-72.
40 Holmes MD, Chen WY, Feskanich D, et al. Physical activity and survival after breast cancer diagnosis. JAMA 2005 293:2479-86.

41 Abrahamson PE, Gammon MD, Lund MJ, et al. Recreational physical activity and survival among young women with breast cancer. Cancer 2006;107:1777-85.
42 Haydon AM, Macinnis RJ, English DR, et al. Effect of physical activity and body size on survival after diagnosis with colorectal cancer. Gut 2006;55:62-7.
43 Meyerhardt JA, Giovannucci EL, Holmes MD, et al. Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol 2006;24:3527-34.
44 Holick CN, Newcomb PA, Trentham-Dietz A, et al. Physical activity and survival after diagnosis of invasive breast cancer. Cancer Epidemiol Biomarkers Prev 2008;17:379-86.
45 Sundelof M, Lagergren J, Ye W. Patient demographics and lifestyle factors influencing long-term survival of oesophageal cancer and gastric cardia cancer in a nationwide study in Sweden. Eur J Cancer 2008;44:1566-71.
Yang L, Klint A, Lambe M, et al. Predictors of ovarian cancer survival: a population-based prospective study in Sweden. Int J Cancer 2008;123:672-9. 2009;27:1969-75.
49 Meyerhardt JA, Giovannucci EL, Ogino S, et al. Physical activity and male colorectal cancer survival. Arch Intern Med 2009;169:2102-8.
50 Sternfeld B, Weltzien E, Quesenberry CP, Jr., et al. Physical activity and risk of recurrence and mortality in breast cancer survivors: findings from the LACE study. Cancer Epidemiol Biomarkers Prev 2009;18:87-95.
51 West-Wright CN, Henderson KD, Sullivan-Halley J, et al. Long-term and recent recreational physical activity and survival after breast cancer: the California Teachers Study. Cancer Epidemiol Biomarkers Prev 2009;18:2851-9.
52 Friedenreich CM, Gregory J, Kopciuk KA, et al. Prospective cohort study of lifetime physical activity and breast cancer survival. Int J Cancer 2009 124:1954-62.
53 Hellmann SS, Thygesen LC, Tolstrup JS, et al. Modifiable risk factors and survival in women diagnosed with primary breast cancer: results from a prospective cohort study. Eur J Cancer Prev 2010;19:366-73.
54 Keegan TH, Milne RL, Andrulis IL, et al. Past recreational physical activity, body size, and all-cause mortality following breast cancer diagnosis: results from the Breast Cancer Family Registry. Breast Cancer Res Treat 2010;123:531-42.
55 Emaus A, Veierod MB, Tretli S, et al. Metabolic profile, physical activity, and mortality in breast cancer patients. Breast Cancer Res Treat 2010 121:651-60.
56 Baade PD, Meng X, Youl PH, et al. The impact of body mass index and physical activity on mortality among patients with colorectal cancer in Queensland, Australia. Cancer Epidemiol Biomarkers Prev 2011;20:1410-20.
57 Irwin ML, McTiernan A, Manson JE, et al. Physical activity and survival in postmenopausal women with breast cancer: results from the women's health initiative. Cancer Prev Res (Phila) 2011;4:522-9.

58 Kenfield SA, Stampfer MJ, Giovannucci E, et al. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J Clin Oncol 2011;29:726-32.
59 Morikawa T, Kuchiba A, Yamauchi M, et al. Association of CTNNB1 (beta-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. JAMA 2011;305:1685-94.
60 Beasley JM, Kwan ML, Chen WY, et al. Meeting the physical activity guidelines and survival after breast cancer: findings from the after breast cancer pooling project. Breast Cancer Res Treat 2012;131:637-43.
61 Cleveland RJ, Eng SM, Stevens J, et al. Influence of prediagnostic recreational physical activity on survival from breast cancer. Eur J Cancer Prev 2012;21:46-54.
62 Kuiper JG, Phipps AI, Neuhouser ML, et al. Recreational physical activity, body mass index, and survival in women with colorectal cancer. Cancer Causes Control 2012.

63 Arem H, Chlebowski R, Stefanick ML, et al. Body mass index, physical activity, and survival after endometrial cancer diagnosis: results from the Women's Health Initiative. Gynecol Oncol 2013;128:181-6.
64 Arem H, Park Y, Pelser C, et al. Prediagnosis body mass index, physical activity, and mortality in endometrial cancer patients. J Natl Cancer Inst 2013;105:342-9.
65 Campbell PT, Patel AV, Newton CC, et al. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol 2013;31:876-85.
66 Jeon J, Sato K, Niedzwiecki D, et al. Impact of Physical Activity After Cancer Diagnosis on Survival in Patients With Recurrent Colon Cancer: Findings From CALGB 89803/Alliance. Clin Colorectal Cancer 2013.
67 Schmidt ME, Chang-Claude J, Vrieling A, et al. Association of pre-diagnosis physical activity with recurrence and mortality among women with breast cancer. Int J Cancer 2013;133:1431-40.
68 Tao MH, Hainaut P, Marian C, et al. Association of prediagnostic physical activity with survival following breast cancer diagnosis: influence of TP53 mutation status. Cancer Causes Control 2013.
69 Bradshaw PT, Ibrahim JG, Khankari N, et al. Post-diagnosis physical activity and survival after breast cancer diagnosis: the Long Island Breast Cancer Study. Breast Cancer Res Treat 2014;145:735-42.
70 Pelser C, Arem H, Pfeiffer RM, et al. Prediagnostic lifestyle factors and survival after colon and rectal cancer diagnosis in the National Institutes of Health (NIH)-AARP Diet and Health Study. Cancer 2014;120:1540-7.
71 Zhou Y, Chlebowski R, LaMonte MJ, et al. Body mass index, physical activity, and mortality in women diagnosed with ovarian cancer: results from the Women's Health Initiative. Gynecol Oncol 2014;133:4-10.

Supplementary table S2 Dose-response relation between recreational physical activity and cancer mortality in the general population

	Number of datasets included	Recreational physical activity (MET-h/wk)						$\boldsymbol{P}_{\text {for non-linearity }}$
		0	5	10	15	20	25	
Overall	11	1.00	0.88(0.84-0.93)	0.86(0.82-0.90)	0.86(0.81-0.91)	0.85(0.80-0.90)	0.84(0.78-0.84)	0.006
Location								
Asia	8	1.00	0.91(0.88-0.95)	0.87(0.84-0.92)	0.86(0.81-0.91)	0.85(0.79-0.91)	0.84(0.76-0.90)	0.066
Duration of follow-up(year)								
< 10	8	1.00	0.91(0.87-0.95)	0.87(0.84-0.92)	0.86(0.83-0.92)	0.85(0.80-0.92)	0.83(0.78-0.90)	0.066
				Recreational ph	ysical activity (h/			
		0	2	3	4	6	8	
Overall	25	1.00	0.94(0.90-0.97)	0.92(0.89-0.96)	0.91(0.88-0.95)	0.91(0.88-0.94)	0.90(0.87-0.94)	0.024
Location								
North America	20	1.00	0.93(0.89-0.96)	0.93(0.89-0.95)	0.92(0.88-0.95)	0.89(0.86-0.92)	0.94(0.92-0.95)	0.008
Duration of follow-up (year)								
$\geqslant 10$	25	1.00	0.94(0.90-0.97)	0.92(0.89-0.96)	0.91(0.88-0.95)	0.91(0.88-0.94)	0.90(0.87-0.94)	0.024

${ }^{\mathrm{a}}$ MET, metabolic equivalent of task.
${ }^{\mathrm{b}} P$ value for non-linearity was calculated by testing the null hypothesis that the coefficient of the second spline is equal to 0 .

Supplementary table S3 Dose-response relation between recreational physical activity and cancer mortality among cancer survivors

	Number of datasets included	Recreational physical activity (MET-h/wk) ${ }^{\text {a }}$						$\boldsymbol{P}^{\text {b }}$ for non-linearity
		0	5	10	15	30	50	
Overall	23	1.00	0.82(0.75-0.89)	0.75(0.69-0.82)	0.73(0.68-0.79)	0.70(0.63-0.77)	0.65(0.52-0.81)	<0.001
Sex								
Female	21	1.00	0.83(0.76-0.91)	0.74(0.67-0.81)	0.69(0.63-0.76)	0.71(0.61-0.84)	/	<0.001
Location								
North America	21	1.00	0.84(0.78-0.92)	0.75(0.69-0.82)	0.71(0.65-0.76)	0.69(0.62-0.76)	$0.75(0.61-0.92)$	<0.001
Cancer types								
Breast cancer	12	1.00	0.78(0.70-0.87)	0.68(0.61-0.76)	0.64(0.57-0.72)	0.66(0.57-0.76)	0.74(0.54-1.03)	<0.001
Colorectal cancer	8	1.00	0.89(0.76-1.02)	0.84(0.70-0.96)	$0.80(0.65-0.94)$	0.63(0.48-0.83)	/	0.772
When physical activity was measured								
Pre-diagnosis	14	1.00	0.82(0.74-0.91)	0.78(0.71-0.87)	0.79(0.71-0.87)	0.79(0.68-0.92)	0.79(0.57-1.12)	0.002
Post-diagnosis	11	1.00	0.80(0.71-0.92)	0.70(0.62-0.80)	0.65(0.57-0.74)	0.55(0.48-0.65)	0.53(0.38-0.75)	0.127
Duration of follow-up (year)								
<10	21	1.00	0.82(0.74-0.89)	0.76(0.69-0.82)	0.75(0.68-0.82)	0.72(0.63-0.80)	0.67(0.53-0.86)	<0.001

${ }^{\text {a }}$ MET, metabolic equivalent of task.
${ }^{\mathrm{b}} P$ value for non-linearity was calculated by testing the null hypothesis that the coefficient of the second spline is equal to 0 .

